怎么做好数据分析提升订单转化
本文目录
如何提升淘宝店铺的转化率
我们做店铺引流根本的目的还是在于促成转化率,所以有了流量,还要想怎么才能将这些流量进行实际的转化才行。今天小鱼就和大家说说如何提升店铺转化率。
一、基础优化
简单来说就是:主图→价格→销量→评价、买家秀、问大家→详情页。
1、主图点击率、视频
一般来说,消费者浏览一个产品的时间很短,如果主图不够吸引就会导致展现高点击低,很快会被判断这款是自己不需要的,所以主图视觉冲击是很重要的。
主图有五张,第一张很关键,所以我们一定要最具代表性、最能突显出产品特点,并且能够吸引顾客的眼球;
第二张至第五张可以产品搭配、细节图、场景图、白底图的顺序来设置。总的来说,就是要简单明了地把我们的产品亮点全面展示给用户,能够让顾客更快地了解产品。
另外就是主图视频不要只是简单的图片轮播,需要做好产品的展示介绍,注意节奏要快一些,不要过于太多重复画面,可以展示颜色或者细节,从不同角度能够全面去展示。
2、价格合理
我们要知道不是价格越低转化就会越高,每一个消费者对产品都会有一个心理价位区间,高于这个价位就会觉得贵了,低了反而会觉得质量没有保障,所以我们要保证产品的价格处于大众的价格区间之间。
这个该如何去判断?可以在淘宝中按照销量排序,搜索同类产品的前三页,把价格罗列出来,根据这个区间价的同时结合我们产品本身的成本来定价即可。
3、销量
销量没有什么需要说的,自然是越高越好,销量高会让消费者感到信服。
4、评价、买家秀、问大家
做好这三点最重要的就是不要有差评;
好评怎么做?
做好售后维护和养成用户购物后评价的习惯,可以用最近新升级的评价激励工具,配置评价激励奖池、结合买家秀征集活动、售后关怀卡片、旺旺邀请评价等方法。
买家秀怎么做?
单个商品下加精4条以上内容即可透出洋淘买家秀模块,至少加精3条视频内容1条图文内容,好的买家秀可以增加消费者的信任感,从促进转化。
操作路径:洋淘买家秀后台→买家秀内容→宝贝素材→宝贝素材管理→筛选加精。被激励的精选买家秀还可进入公域渠道分发得流量。
详情页
随着产品页面的问大家、买家秀等模板的增加,用户已经养成了在购物时看详情页的习惯,所以说详情页依然还是很重要的。
因为在主图展现的虽然精简但毕竟有限,做好详情页至少要有产品满足的需求(比如女装的模特图)、产品的买点(细节)以及产品的售后(保障),这样才能打消顾客购买的顾虑,实现转化。
以上就是小鱼为大家整理的促成淘宝店铺转化率的方法,想了解更多实用干货,请关注店小鱼电商卖家助手。
电商网站如何提高转化率
电商网站提升转化率的一些方法,供参考:
1、将白底产品图片换成日常使用图片
顾客越来越聪明了,他们不再只是单纯地浏览电商零售店,同时还想获得良好的体验。如果品牌真的想在电商上获得成功的话,必须要能吸引顾客,给他们提供一流的购物体验,从第一次进网站开始到最后付款结束。
而其中一种吸引消费者进网站体验的方法,就是将原来只有白色背景的产品图片,换成日常使用图片(平台有特殊规定的除外)。产品日常使用的图片能让消费者直观地看产品如何使用,而且它有助于让消费者将自身与产品联系起来,帮助鼓励购买。
2、在产品图片旁边附上视频
事实证明,使用视频能帮助电商零售商提高转化率,视频能激发消费者的购买欲望,比单放图片效果好很多。
如果你觉得为每个产品录制视频很贵的话,可以先对几种核心产品进行试验,后续再一步一步完善,最终你会发现,这钱花得很值。
3、改变“加入购物车(Add To Cart)”按钮的颜色
许多电商零售商将“加入购物车”选项按钮设置成网站主题颜色,这是不对的,不利于转化率优化。如果你正好属于上述零售商的话,那尽快就改了吧!“加入购物车”按钮是所有电商网站中最重要的一个功能按键,所以要让它凸显出来。Unbounce之前曾经表示,未来“加入购物车”按键将呈现大的橙色按钮。另外不要害怕实践,转化率的提高才是最重要的。所以要确保“加入购物车”键不要同网站其他功能键混合,颜色突出会鼓励消费者购买。
4、写好产品文案
如果有人告诉你产品文案仅仅只是为了SEO,那忘掉他们所说的一切。好的产品文案能促进销售,但你要写得正确写得出彩。如果你浏览产品时,发现好多产品文案的拼写跟语法都有错,而潜在的客户对品牌不熟悉的话,当他看到这份文案时会作何感想?
花时间做好文案,永远不要好低估一个好文案的价值。虽然做一份文案成本高,就像做产品视频一样,但最终你会发现钱花的很值。
5、提供包邮服务
注意到竞争对手最近都不收邮费了吗?这是有原因的,因为对消费者来说,运费可能是消费者放弃购买的原因之一,考虑到这一点,许多零售商纷纷提供包邮服务。不过记住运费是可以摊到价格里的,但总体来说,免运费还是有盈利的。而且可以多试几组价格,或者提供包邮服务,最后看哪个价格效果最好。
可以找一个周末亲自试验一下,不做促销,免掉运费之后,看下周末的转化率怎么样。如果你看到转化率提高的话,那就说明行动还是有回报的。
最后,即使整体转化率就增加那么一点点,对一整个月或是一整年的收益和利润都有很大的影响,作为一位企业家或是电商网站管理人员,如果你不积极做更好的改变,那么你可能会损失一大笔营收哦。
一名优秀的数据分析师是怎样炼成的
近些年,互联网公司对数据分析师岗位的需求越来越多,这不是偶然。
过去十多年,中国互联网行业靠着人口红利和流量红利野蛮生长;而随着流量获取成本不断提高、运营效率的不断下降,这种粗放的经营模式已经不再可行。互联网企业迫切需要通过数据分析来实现精细化运营,降低成本、提高效率;而这对数据分析师也提出了更高的要求。
本文将和大家分享数据分析师的演变、数据分析价值体系、数据分析师必备的四大能力、七大常用思路以及实战分析案例。
一、数据分析师的前世今生
在介绍数据分析师之前,我们先来看一下这几个历史人物,看看他们都跟数据分析师有着怎样的渊源?
历史上大名鼎鼎的“分析师”
上面展示的六个历史人物(从左往右,从上往下)分别是:张良、管仲、萧何、孙斌、鬼谷子和诸葛亮。他们是历史上大名鼎鼎的谋士,有的还做过丞相。他们博览群书、眼光独到,通过对大量史实进行总结发现了很多规律,并且在实践中成功预测了很多事件。他们通过“历史统计——总结分析——预测未来”的实践为自己的组织创造了绝大的价值,而这就是“数据分析师”的前身。
那么现在,数据分析师需要哪些必备技能,如何成为一名优秀的数据分析师呢?
二、数据分析师的价值金字塔
一个完整的企业数据分析体系涉及到多个环节:采集、清理、转化、存储、可视化、分析决策等等。其中,不同环节工作内容不一样,消耗的时间和产生的价值也相差甚远。
数据分析价值金字塔
互联网企业数据分析体系中至少有三方面的数据:用户行为数据、交易订单数据和CRM数据。工程师把不同来源的数据采集好,然后通过清理、转化等环节统一到数据平台上;再由专门的数据工程师从数据平台上提出数据。这些工作占用了整个环节90%的时间,然而产生的价值却只占10%。
这个金字塔再往上数据分析就和业务实际紧密结合,以报表、可视化等方式支持企业的业务决策,涵盖产品、运营、市场、销售、客户支持各个一线部门。这个部分占用了整个环节才10%的时间,但是却能产生90%的价值。
一个优秀的商务数据分析师应该以价值为导向,紧密结合产品、运营、销售、客户支持等实践,支持各条业务线发现问题、解决问题并创造更多的价值。
三、数据分析师必备的四大能力
数据分析师必备的四大技能
1.全局观
某日,产品经理跑过来问我:Hi,能不能帮我看一下昨天产品新功能发送的数据?谢谢!条件反射我会说:好,我马上给你!不过我还是礼貌性地问了一句:为什么需要这数据呢?产品经理回复道:哦,昨天新功能上线了,我想看看效果。知道了产品经理的目的,我就可以针对性地进行数据提取和分析,分析的结果和建议也就更加具有可操作性。
很多时候,数据分析师不能就数说数,陷入各种报表中不能自拔。一个优秀的数据分析师应该具有全局观,碰到分析需求的时候退一步多问个为什么,更好地了解问题背景和分析目标。
2.专业度
某企业的数据科学家针对用户流失情形进行建模预测,最终得到的用户流失模型预测准确率高达90%多。准确率如此之高,让商务分析师都不敢相信。经过检验,发现数据科学家的模型中有一个自变量是“用户是否点击取消按钮”。而点击了“取消”按钮是用户流失的重要征兆,做过这个动作的用户基本上都会流失,用这个自变量来预测流失没有任何业务意义和可操作性。
数据分析师要在所在行业(例如电商、O2O、社交、媒体、SaaS、互金等等)展示她/他的专业度,熟悉自己行业的业务流程和数据背后的意义,避免上面的数据笑话。
3.想象力
商业环境的变化越来越快、越来越复杂,一组商业数据的背后涉及到的影响因素是常人难以想象的。数据分析师应该在工作经验的基础上发挥想象力,大胆创新和假设。
4.信任度
以销售岗位为例,一个销售人员首先要和用户建立起信任;如果用户不信任你的话,那他也很难信任或者购买你的产品。同理,数据分析师要和各部门同事建立良好的人际关系,形成一定的信任。各个部门的同事信任你了,他们才可能更容易接受你的分析结论和建议;否则事倍功半。
四、数据分析常见的七种思路
1.简单趋势
通过实时访问趋势了解产品使用情况,便于产品迅速迭代。访问用户量、访问来源、访问用户行为三大指标对于趋势分析具有重要意义。
分钟级别的实时走势
以星期为周期的趋势对比
2.多维分解
数据分析师可以根据分析需要,从多维度对指标进行分解。例如浏览器类型、操作系统类型、访问来源、广告来源、地区、网站/手机应用、设备品牌、APP版本等等维度。
多维度分析访问用户的属性
3.转化漏斗
按照已知的转化路径,借助漏斗模型分析总体和每一步的转化情况。常见的转化情境有注册转化分析、购买转化分析等。
漏斗分析展示注册每一步的流失率
4.用户分群
在精细化分析中,常常需要对有某个特定行为的用户群组进行分析和比对;数据分析师需要将多维度和多指标作为分群条件,有针对性地优化产品,提升用户体验。
5.细查路径
数据分析师可以观察用户的行为轨迹,探索用户与产品的交互过程;进而从中发现问题、激发灵感亦或验证假设。
通过细查路径分析用户的行为规律
6.留存分析
留存分析是探索用户行为与回访之间的关联。一般我们讲的留存率,是指“新增用户”在一段时间内“回访网站/app”的比例。数据分析师通过分析不同用户群组的留存差异、使用过不同功能用户的留存差异来找到产品的增长点。
留存分析发现“创建图表”的用户留存度更高
7.A/B测试
A/B测试就是同时进行多个方案并行测试,但是每个方案仅有一个变量不同;然后以某种规则(例如用户体验、数据指标等)优胜略汰选择最优的方案。数据分析师需要在这个过程中选择合理的分组样本、监测数据指标、事后数据分析和不同方案评估。
五、数据分析实战案例
某社交平台推出付费高级功能,并且以EDM(Email Direct Marketing,电子邮件营销)的形式向目标用户推送,用户可以直接点击邮件中的链接完成注册。该渠道的注册转化率一直在10%-20%之间;但是8月下旬开始注册转化率急剧下降,甚至不到5%。
如果你是该公司的数据分析师,你会如何分析这个问题呢?换言之,哪些因素可能造成EDM转化率骤降?
一个优秀的数据分析师应该具有全局观和专业度,从业务实际出发,综合各个方面的可能性。因此,EDM注册转化率骤降的可能性罗列如下:
1.技术原因:ETL延迟或者故障,造成前端注册数据缺失,注册转化率急剧下降;
2.外部因素:该时间节点是否有节假日,其他部门近期是否有向用户发送推广邮件,这些因素可能稀释用户的注意力;
3.内部因素:邮件的文案、设计是否有改变;邮件的到达率、打开率、点击率是否正常;邮件的注册流是否顺畅。
经过逐一排查,数据分析师将原因锁定在注册流程上:产品经理在注册环节添加了绑定信用卡的内容,导致用户的注册提交意愿大幅度下降,转化率暴跌。
一个看似简单的转化率分析问题,它的背后是数据分析师各方面能力的体现。首先是技术层面,对ETL(数据抽取-转换-载入)的理解和认识;其实是全局观,对季节性、公司等层面的业务有清晰的了解;最后是专业度,对EDM业务的流程、设计等了如指掌。
练就数据分析的洪荒之力并非一朝一夕之功,而是在实践中不断成长和升华。一个优秀的数据分析师应该以价值为导向,放眼全局、立足业务、与人为善,用数据来驱动增长。











