AMZ123跨境卖家导航
拖动LOGO到书签栏,立即收藏AMZ123
首页跨境问答正文

谷歌广告效果分析角度选择及其报告撰写方法

2025-03-25 20:3015


本文目录

  1. google推广效果怎么样
  2. 谷歌广告运营常见问题有哪些
  3. 谷歌广告系统的特征及其优势
  4. 从谷歌流感趋势谈大数据分析的光荣与陷阱

google推广效果怎么样

google推广效果可以,毕竟全球90%流量来自谷歌。其他市场上很“热闹”的推广方式,其实抓的都是极小的流量。

比如除了谷歌之外的其他搜索引擎他们流量加在一起还不到谷歌的2%,所以说做YANDEX推广和BING推广的公司可以说都是在睁眼说瞎话。。。

再比如外贸B2B平台基本都没有自身流量,主要都靠谷歌收录获取一些间接流量,还要和其他会员分、还要搞竞价。

所以建议先研究下:谷歌首页4大梯队,这样消费也会理智一些。

还有,谷歌推广最近更名为google ads了,其实早该改了,adwords好拗口的:)

谷歌广告运营常见问题有哪些

一、拥有个人网站

申请谷歌广告联盟的首要条件是本人需要有一个网站,因为如果没有网站,即使申请到了账户也无法投放广告。需要说明的事,网站内容必须要符合谷歌的政策,一般谷歌不会考察网站流量,但是它只接受一级域名,不接受免费博客、免费空间、免费网站等的申请。

二、网站内容需留意

谷歌广告联盟对于申请的网站有相应的条件限制,在申请前建议大家详细了解谷歌联盟的相关规定。首先你的网站首页一定要是满的,不能有明显空白的地方。对于申请的网站发布商,不能再包含版权材料(如视频、MP3、新闻组及图像结果等)的网页上展示谷歌广告。比如你的网站是个电影网站,就建议用其他文字类网站申请,以后再试着把代码发到影视站上,这样能提高申请成功的几率。

二、注册GoogleAdSense

您需要打开谷歌联盟注册的页面,点击注册按钮,根据相关提示正确填写注册信息。需要说明的是,如果您以前注册过GoogleAdWords,那么可以直接使用您的GoogleAdWords的密码登陆,这样直接能够开通账户。注册时页面会提示不支持中文,所以在填写的时候用拼音。在填写收款人姓名时要特别注意信息不能错,姓、名的顺序可以按照中文习惯先写姓、后写名,同时也能按照英语习惯把顺序颠倒过来。一定要确保信息填写的准确无误,因为一旦提交将永远不得修改。在填写电话时,要注意国家代码和区号前不要加0,根据页面提示填好所有的信息之后,再检查一下所填信息是否都是正确的,因为在此之后将不能更改付款人的姓名国家或地区名称。

谷歌广告系统的特征及其优势

Google广告系统具有以下特征和优势:

1.精准定位:Google广告系统利用先进的算法和大数据分析能力,可以根据用户的兴趣、搜索历史、地理位置等信息,实现精确的广告定位。

2.多样化的广告形式:Google广告系统提供多种广告形式,如搜索广告、显示广告、视频广告等,适应不同行业和广告目标的需求。

3.强大的量化和分析能力:Google广告系统提供丰富的数据报告和分析工具,可以实时监测广告活动的效果和转化情况。

4.广告投放灵活性:Google广告系统支持不同预算和投放策略的灵活调整。

5.广告生态系统:Google拥有庞大的广告生态系统,包括搜索引擎、YouTube、Google Play商店等平台,覆盖了广告触达用户的多个渠道。

6.智能化和自动化:Google广告系统不断引入人工智能和机器学习技术,提供智能投放和优化功能。

从谷歌流感趋势谈大数据分析的光荣与陷阱

从谷歌流感趋势谈大数据分析的光荣与陷阱

本文从谷歌流感趋势2009年前后表现差异谈起,讨论了大数据分析容易面临的大数据自大、算法演化、看不见的动机导致数据生成机制变化等陷阱,以及对我国大数据产业发展的借鉴。本文认为,为健康发展大数据产业,我国需要防范大数据自大风险、推动大数据产业和小数据产业齐头并进,并强化提高大数据透明度、审慎评估大数据质量等方面的努力。?

一、谷歌流感趋势:未卜先知?

“谷歌流感趋势”(Google Flu Trends,GFT)未卜先知的故事,常被看做大数据分析优势的明证。2008年11月谷歌公司启动的GFT项目,目标是预测美国疾控中心(CDC)报告的流感发病率。甫一登场,GFT就亮出十分惊艳的成绩单。2009年,GFT团队在《自然》发文报告,只需分析数十亿搜索中45个与流感相关的关键词,GFT就能比CDC提前两周预报2007-2008季流感的发病率。

也就是说,人们不需要等CDC公布根据就诊人数计算出的发病率,就可以提前两周知道未来医院因流感就诊的人数了。有了这两周,人们就可以有充足的时间提前预备,避免中招。多少人可以因为大数据避免不必要的痛苦、麻烦和经济损失啊。

此一时,彼一时。2014年, Lazer等学者在《科学》发文报告了GFT近年的表现。2009年,GFT没有能预测到非季节性流感A-H1N1;从2011年8月到2013年8月的108周里,GFT有100周高估了CDC报告的流感发病率。高估有多高呢?在2011-2012季,GFT预测的发病率是CDC报告值的1.5倍多;而到了2012-2013季,GFT流感发病率已经是CDC报告值的双倍多了。这样看来,GFT不就成了那个喊“狼来了”的熊孩子了么。那么不用大数据会如何?作者报告,只用两周前CDC的历史数据来预测发病率,其表现也要比GFT好很多。

2013年,谷歌调整了GFT的算法,并回应称出现偏差的罪魁祸首是媒体对GFT的大幅报道导致人们的搜索行为发生了变化。Lazer等学者穷追不舍。他们的估算表明,GFT预测的2013-2014季的流感发病率,仍然高达CDC报告值的1.3倍。并且,前面发现的系统性误差仍然存在,也就是过去犯的错误如今仍然在犯。因为遗漏了某些重要因素,GFT还是病得不轻。

为什么传说中充满荣光的大数据分析会出现如此大的系统性误差呢?从大数据的收集特征和估计方法的核心,我们可以探究一二。

二、新瓶装旧酒:过度拟合

大数据时代的来临,为数据收集带来了深刻变革。海量数据、实时数据、丰富多样的非结构数据,以前所未有的广度进入了人们的生活。但是不变的是,在统计分析方法上,数据挖掘(Data mining)仍然是统计分析的主要技术。而数据挖掘中最引人注目的过度拟合(overfitting)问题,由于下文提到的各类陷阱的存在,远远没有解决。

我们先用一个故事来解释何为过度拟合。假设有一所叫做象牙塔的警官学校致力于培养抓小偷的警察。该校宣称,在他们学校可以见到所有类型的普通人、也能见到所有类型的小偷;到他们学校来学习就能成为世界上最厉害的警察。但是这所学校有个古怪,就是从不教授犯罪心理学。

象牙塔的教学方式是这样的:将人群随机分为十组,每组都是既有普通人又有小偷。学员可以观察到前九组所有人,也知道谁是普通人谁是小偷。学员要做的是,根据自己从前九组中了解到的小偷特征,从第十组中找出小偷。比如学员从前九组观察到小偷更喜欢在给孩子买尿布的时候也买啤酒,那么在第十组观察到有人在买尿布时也买啤酒,就作为一个嫌疑条件。完成这个过程之后,学校再将人群打散重新分成十组,如此循环往复,之后学校进行测试。测试方式就是再次将人群随机分为十组,看谁能最快最准根据前九组的信息找出第十组的小偷。冠军即象牙塔最棒警察,可以派到社会上抓小偷了。

一段时间后,问题来了:象牙塔最棒警察在象牙塔校内总能迅速找到小偷,可一旦出了象牙塔,该警察就老犯错抓、该抓不抓的错误。他抓小偷的表现,甚至比从来没有来象牙塔学习的人还要差。

在这个故事里,象牙塔最棒警察就相当于根据大数据的数据挖掘方法、机器学习之后挑选出来的最优模型。小偷相当于特定问题需要甄选出的对象,比如得流感的人、不干预就会自杀的人、赖账的人。前九组的人就相当于用于训练模型的训练数据;第十组人则相当于检验训练结果的检验数据。不教授犯罪心理学就意味着抓小偷并不需要理解小偷为什么会成为小偷,类似于在数据分析中只关心相关关系而不关注因果关系。训练最佳警察的过程,就类似于运用机器学习技术,采用训练数据来训练模型,然后采用检验数据来选择模型,并将预测最好的模型作为最佳模型,用于未来的各类应用中。

最后,警察在象牙塔内能快速抓小偷而校外不能,就是过度拟合问题。由于在学校通过多次重复练习,学员小偷的特征已经烂熟于心,因此无论怎么随机分,都能快速找到小偷并且不出错;这就相当于训练模型时,由于已经知道要甄选人群的特征,模型能够对样本内观测值作出很好的拟合。由于象牙塔学校判断小偷的标准主要看外部特征而不去理解内在原因,比如小偷常戴鸭舌帽,那么当社会人群里的小偷特征与象牙塔人群有很大差别时,比如社会上的小偷更常戴礼帽,在象牙塔内一抓一个准的鸭舌帽标准,到社会就变成一抓一个错了。也就是说,在样本内预测很好的模型,到样本外预测很差。这,就是过度拟合的问题。

从过度拟合角度,可以帮助我们理解为什么GFT在2009年表现好而之后表现差。在2009年,GFT已经可以观察到2007-2008年间的全部CDC数据,也就是说GFT可以清楚知道CDC报告的哪里发病率高而哪里发病率低。这样,采用上述训练数据和检验数据寻找最佳模型的方法时标准就很清晰,就是不惜代价高度拟合已经观察到的发病率。 Lazer等人发现,GFT在预测2007-2008年流感流行率时,存在丢掉一些看似古怪的搜索词,而用另外的5000万搜索词去拟合1152个数据点的情况。

2009年之后,该模型面对的数据就真正是未知的,这时如果后来的数据特征与2007-2008年的数据高度相似,那么GFT也该可以高度拟合CDC估计值。但现实是无情的,系统性误差的存在,表明GFT在一些环节出了较大偏差而不得不面对过度拟合问题。

从上面的故事可以看到,产生过度拟合有三个关键环节。第一,象牙塔学校认定本校知道所有普通人与所有小偷的特征,也就等于知道了社会人群特征。第二,象牙塔学校训练警察,不关心小偷的形成原因,而关注细致掌握已知小偷的特征。第三,象牙塔学校认为,不论时间如何变化,本校永远能保证掌握的普通人和小偷的行为特征不会发生大规模变动、特别是不会因为本校的训练而发生改变。

在大数据这个新瓶里,如果不避开下面的三个陷阱,就仍然可能装着数据挖掘带来的过度拟合旧酒:大数据自大、算法演化、看不见的动机导致的数据生成机制变化。

三、大数据分析的挑战

(一)陷阱一:“大数据自大”

Lazer等学者提醒大家关注“大数据自大(big data hubris)”的倾向,即认为自己拥有的数据是总体,因此在分析定位上,大数据将代替科学抽样基础上形成的传统数据(后文称为“小数据”)、而不是作为小数据的补充。

如今,大数据确实使企业或者机构获取每一个客户的信息、构成客户群的总体数据成为可能,那么说企业有这样的数据就不需要关心抽样会有问题吗?

这里的关键是,企业或者机构拥有的这个称为总体的数据,和研究问题关心的总体是否相同。《数据之巅》一书记载了下面这个例子:上世纪三十年代,美国的《文学文摘》有约240万读者。如果《文学文摘》要了解这个读者群的性别结构与年龄结构,那么只要财力人力允许,不抽样、直接分析所有这240万左右的数据是可行的。但是,如果要预测何人当选1936年总统,那么认定“自己的读者群”这个总体和“美国选民”这个总体根本特征完全相同,就会差之毫厘谬以千里了。事实上,《文学杂志》的订户数量虽多,却集中在中上层,并不能代表全体选民。与此相应,盖洛普根据选民的人口特点来确定各类人群在样本中的份额,建立一个5000人的样本。在预测下届总统这个问题上,采用这个小数据比采用《文学文摘》的大数据,更准确地把握了民意。

在GFT案例中,“GFT采集的搜索信息”这个总体,和“某流感疫情涉及的人群”这个总体,恐怕不是一个总体。除非这两个总体的生成机制相同,否则用此总体去估计彼总体难免出现偏差。

进一步说,由于某个大数据是否是总体跟研究问题密不可分,在实证分析中,往往需要人们对科学抽样下能够代表总体的小数据有充分认识,才能判断认定单独使用大数据进行研究会不会犯“大数据自大”的错误。

(二)陷阱二:算法演化

相比于“大数据自大”问题,算法演化问题(algorithm dynamics)就更为复杂、对大数据在实证运用中产生的影响也更为深远。我们还是借一个假想的故事来理解这一点。假定一个研究团队希望通过和尚在朋友圈发布的信息来判断他们对风险的态度,其中和尚遇到老虎的次数是甄别他们是否喜欢冒险的重要指标。观察一段时间后该团队发现,小和尚智空原来遇到老虎的频率大概是一个月一次,但是从半年前开始,智空在朋友圈提及自己遇到老虎的次数大幅增加、甚至每天都会遇到很多只。由于大数据分析不关心因果,研究团队也就不花心思去追究智空为什么忽然遇到那么多老虎,而根据历史数据认定小智空比过去更愿意冒险了。但是研究团队不知道的情况是:过去智空与老和尚同住,半年前智空奉命下山化斋;临行前老和尚交代智空,山下的女人是老虎、遇到了快躲开。在这个故事里,由于老和尚的叮嘱,智空眼里老虎的标准变了。换句话说,同样是老虎数据,半年前老虎观测数量的生成机制,和半年后该数据的生成机制是不同的。要命的是,研究团队对此并不知情。

现实中大数据的采集也会遇到类似问题,因为大数据往往是公司或者企业进行主要经营活动之后被动出现的产物。以谷歌公司为例,其商业模式的主要目标是更快速地为使用者提供准确信息。为了实现这一目标,数据科学家与工程师不断更新谷歌搜索的算法、让使用者可以通过后续谷歌推荐的相关词快捷地获得有用信息。这一模式在商业上非常必要,但是在数据生成机制方面,却会出现使用者搜索的关键词并非出于使用者本意的现象。

这就产生了两个问题:第一,由于算法规则在不断变化而研究人员对此不知情,今天的数据和明天的数据容易不具备可比性,就像上例中半年前的老虎数据和半年后的老虎数据不可比一样。第二,数据收集过程的性质发生了变化。大数据不再只是被动记录使用者的决策,而是通过算法演化,积极参与到使用者的行为决策中。

在GFT案例中,2009年以后,算法演化导致搜索数据前后不可比,特别是“搜索者键入的关键词完全都是自发决定”这一假定在后期不再成立。这样,用2009年建立的模型去预测未来,就无法避免因过度拟合问题而表现较差了。

(三)、陷阱三:看不见的动机

算法演化问题中,数据生成者的行为变化是无意识的,他们只是被页面引导,点出一个个链接。如果在数据分析中不关心因果关系,那么也就无法处理人们有意识的行为变化影响数据根本特征的问题。这一点,对于数据使用者和对数据收集机构,都一样不可忽略。

除掉人们的行为自发产生系统不知道的变化之外,大数据的评估标准对人们行为的影响尤为值得关注。再以智空为例。假定上文中的小和尚智空发现自己的西瓜信用分远远低于自己好友智能的西瓜信用分。智空很不服气,经过仔细观察,他认为朋友圈言论可能是形成差异的主因。于是他细细研究了智能的朋友圈。他发现,智能从不在朋友圈提及遇到老虎的事,而是常常宣传不杀生、保护环境、贴心灵鸡汤,并定期分享自己化斋时遇到慷慨施主的事。虽然在现实中,他知道智能喜好酒肉穿肠过、也从未见老和尚称赞智能的化斋成果。智空茅塞顿开,从此朋友圈言论风格大变,而不久后他也满意地看到自己的西瓜信用分大幅提高了。

如今,大数据常常倚重的一个优势,是社交媒体的数据大大丰富了各界对于个体的认知。这一看法常常建立在一个隐含假定之上,就是人们在社交媒体分享的信息都是真实的、自发的、不受评级机构和各类评估机构标准影响的。但是,在互联网时代,人们通过互联网学习的能力大大提高。如果人们通过学习评级机构的标准而相应改变社交媒体的信息,就意味着大数据分析的评估标准已经内生于人们生产的数据中,这时,不通过仔细为人们的行为建模,是难以准确抓住的数据生成机制这类的质变的。

从数据生成机构来看,他们对待数据的态度也可能发生微妙的变化。例如,过去社交媒体企业记录保存客户信息的动机仅仅是本公司发展业务需要,算法演化也是单纯为了更好地服务消费者。但随着大数据时代的推进,“数据为王”的特征越来越明显,公司逐渐意识到,自己拥有的数据逐渐成为重要的资产。除了可以在一定程度上给使用者植入广告增加收入之外,还可以在社会上产生更为重要的影响力。这时就不能排除数据生成机构存在为了自身的利益,在一定程度上操纵数据的生成与报告的可能性。比如,在Facebook等社交媒体上的民意调查,就有可能对一个国家的政治走向产生影响。而民意调查语言的表述、调查的方式可以影响调查结果,企业在一定程度上就可以根据自身利益来操纵民意了。

简而言之,天真地认为数据使用者和数据生成机构都是无意识生产大数据、忽略了人们行为背后趋利避害的动机的大数据统计分析,可能对于数据特征的快速变化迷惑不解,即便看到模型预测表现差,也难以找到行之有效的克服方法。

四、前车之鉴

目前,我国高度重视大数据发展。2015年8月31日,国务院印发《促进大数据发展行动纲要》,系统部署大数据发展工作。《纲要》认为,大数据成为推动经济转型发展的新动力(310328,基金吧)、重塑国家竞争优势的新机遇,和提升政府治理能力的新途径。《纲要》指出,2018年底前,要建成国家政府数据统一开放平台,率先在信用、交通、医疗等重要领域实现公共数据资源合理适度向社会开放。与此相应,近年来多地成立了大数据管理局、业界学界对于大数据的分析利用也予以热烈回应。因此,了解大数据分析的优势与陷阱,对我国的经济发展和实证研究具有极其重要的意义;而GFT项目折射出的大数据使用中可能存在的机会与问题,都值得关注。

(一)防范“大数据自大”带来的风险

GFT案例表明,如果认为大数据可以代替小数据,那么过度拟合问题可以带来巨大的估计误差。这一点在“大众创业、万众创新”的今天尤其需要关注。这是因为大数据作为目前“创新”最闪亮的新元素被高度推崇的,而我国经济处于转型时期的特征,使企业或者机构面对的微观数据不断发生动态变化。如果在数据挖掘中忽略这些变化,往往要面临过度拟合带来的损失。

例如,我国P2P网贷行业采用的数据体量虽然大多达不到大数据要求的海量数据,但是不少企业热衷采用爬虫等技术从社交媒体挖掘信息用于甄别客户。这些平台健康状况,就可能与过度拟合的严重程度密不可分。根据中国P2P网贷行业2014年度运营简报和2015年上半年的运营简报,在图一我们可以推算2006年到2004年间和2015年1-5月间月均新增问题平台数,并与2015年6月新增问题平台数作比较。[1]

新增问题平台的大幅增加原因虽然有多方面,但是从数据分析的角度看,由于还没有合法的数据共享机制,P2P平台在甄别客户质量时,往往只依靠自身渠道和从社交媒体等挖掘的数据,并采用数据挖掘方法建立相应建立模型。在数据分析中,不少P2P平台往往疏于查考自身样本的代表性、也忽略宏观经济数据和其他微观数据所包含的信息。由于互联网金融公司出现时间短、又主要成长于经济繁荣期,如果单单依赖有限的数据渠道,数据挖掘与机器学习过程对新常态下个体行为没有足够的认识,在经济下行时仍然根据历史数据而低估逾期率,导致高估平台健康状况,最终不得不面对问题平台不断增加的局面。

(二)大数据和小数据齐头并进大势所趋

大数据和小数据各有优劣。简而言之,小数据通常不会假定该数据就是总体,因此收集数据前往往需要确定收集数据的目标、根据该目标设计的问卷或者收集方法、确定抽样框。在数据采集后,不同学者往往可以通过将新收集数据与不同数据的交叉验证,来评估数据的可信度。小数据在收集上有变量定义清晰、数据生成机制基本可控、检验评估成本相对较低等优点,但是缺点是数据收集成本高,时间间隔长、颗粒度较粗。

大数据的优势就包括数据体量大、收集时间短、数据类型丰富,颗粒度很细。但是,由于大数据往往是一些企业和机构经营活动的附带产品,因此并不是通过精心论证的测度工具生成。另外,由于大数据的体量很大,交叉验证数据的可信度、不同学者采用相同数据独立研究以检验数据的前后一致性等工作难度较大。这些特点意味着大数据本身未必有科学研究要求的那样准确、可靠,在数据分析中就需要对大数据适合研究的问题有较清晰的认识。

在与小数据互为补充推动研究与认知方面,大数据大有可为。将大数据与小数据相结合,可以大大提高数据的颗粒度和预测精度。比如对CDC流感发病率的预测研究发现,将GFT采用的大数据和CDC的历史数据相结合的模型,其预测能力比单独运用大数据或者小数据要好很多。

大数据往往可以实时生成,对于观察特定社区的动态具有小数据无可替代的优势。比如,美国在“九一一”之后,出于快速准确估计在某个特定小社区活动的人口的需要而启动了“工作单位和家庭住址纵向动态(LEHD)”项目,该项目将人口普查数据、全国公司数据、个人申请失业保险、补贴、纳税等记录联通,可以对社区在短时间内的“新陈代谢”作出较为全面的刻画。

这类的数据结合研究,对于了解我国社会经济状况的动态变化会十分重要。一个可能的应用是,将城市人口、工作状态、性别、年龄、收入等小数据采集的信息,和实时产生的交通状况相结合,来预测人们的出行特征,来解决城市交通拥堵、治理雾霾等问题。另一个可能的应用是,推动人民银行征信中心个人征信系统数据和民间征信系统大数据的结合,建立高质量的中国个人征信体系。

另外,我国经济处于转型时期,有不少政策亟需快速评估政策果效。以小数据为基础,利用大数据数据量丰富的优势,可以通过互联网做一些随机实验,来评估一些政策的效果,也是可能的发展方向。

在过去的十多年中,我国在通过非官方渠道采集小数据、特别是微观实证数据方面取得了长足进展。在多方努力下,更多经过严格科学论证而产生的数据可被公众免费获得并用于研究。例如,北京大学的“中国健康与养老追踪调查”、“中国家庭追踪调查”,都由经济、教育、健康、社会学等多领域的专家协同参与问卷的设计和数据采集的质控。在这些努力下,小数据的生成机制更为透明,交叉验证调查数据的可信度等实证研究的必要步骤也更为可行。

但是,目前在小数据的收集和使用、政府和有关机构的小数据开放运用方面,我国还有很大推进空间。只有在对涉及我国基本国情的小数据进行充分学习研究之后,我国学界和业界才能对经济政治社会文化等领域的基本状况有较清晰的把握。而这类的把握,是评估大数据质量、大数据可研究问题的关键,对推进大数据产业健康发展有举足轻重的作用。

因此在政策导向上,为要实现大数据、小数据相得益彰推动经济发展的目标,在促进发展大数据的同时也要大力发展小数据相关产业,推动小数据相关研究与合作,使大数据与小数据齐头并进、互为补充。

(三)提高大数据使用的透明度,加强对大数据质量的评估

大数据面临的透明度问题远比小数据严重。在GFT案例中,Lazer等人指出,谷歌公司从未明确用于搜索的45个关键词是哪些;虽然谷歌工程师在2013年调整了数据算法,但是谷歌并没有公开相应数据、也没有解释这类数据是如何搜集的。我国大数据相关企业的数据,也鲜有学者可以获得并用于做研究的例子。

与透明度相关的就是大数据分析结果的可复制性问题。由于谷歌以外的研究人员难以获得GFT使用的数据,因此就难以复制、评估采用该数据分析结果的可靠性。因此利用大数据的研究难以形成合力,只能处于案例、个例的状态。

另外还要注意到,如果数据生成机制不清晰,研究结论难以复制,而算法演化也表明,最终数据往往成为使用者和设计者共同作用的结果。这种数据生成的“黑箱”特征,容易成为企业或者机构操纵数据生成过程和研究报告结果的温床。唯有通过推动大数据的透明化、公开化,我们才能在大数据产业发展之初,建立健康的数据文化。

因此,在大数据时代,为了更好利用大数据,需要采取相关措施,增加在大数据生成过程的透明度方面的努力。例如,采取措施推进数据生成企业在妥善处理隐私信息后,定期公布大数据随机抽样数据、要求数据生成企业及时公布数据算法的变更,鼓励采用大数据的研究实现可复制性、便于交叉验证等。

五、结语

目前有些流行观点认为,在大数据时代,技术容许人们拥有了总体因此抽样不再重要、另外由于数据挖掘术的进展,只需关心相关关系而不必再关心因果关系。而GFT的实例表明,即便谷歌公司用于GFT计算的是数十亿的观测值,也不能认为谷歌公司拥有了流感人群的总体。误认为数据体量大就拥有了总体,就无法谦卑结合其他渠道的小数据,得到更为稳健的分析结论。而GFT估计的偏误原因,从来都离不开人们的主动的行为--无论是谷歌公司自己认为的GFT的流行导致更多人使用该搜索、还是Lazer等人认为的算法变化、丢弃异常值。因此,不明白数据生成机理变化的原因而只看相关关系的后果,于谷歌是GFT的计算偏误丢了脸,而对热情地投身于采用大数据到创新、创业中的中国民众和相关机构来说,则可能是不得不面对事先没有预备的重大经济损失。

以上是小编为大家分享的关于从谷歌流感趋势谈大数据分析的光荣与陷阱的相关内容,更多信息可以关注环球青藤分享更多干货

AMZ123跨境卖家导航旗下公众号【AMZ123跨境电商】深耕跨境行业,专注热点报道。
扫描右边二维码,关注后回复【加群】,加入优质卖家交流群~
目前30W+卖家关注我们
二维码
最新热门报告作者标签
中国卖家争夺美区新阵地,出海游戏规则变了
从卖货到做品牌,中国卖家抢夺出海新主场!
Temu签署澳洲设备安全承诺,禁止销售非法通信设备
AMZ123获悉,近日,Temu宣布,加入澳大利亚通信与媒体管理局(ACMA)发起的“设备安全承诺”,该承诺是一项自愿性倡议,旨在加强消费者保护,减少在线平台销售不安全或非法通信设备的情况。Temu与其他主要电商平台共同签署此承诺,体现了其在澳大利亚市场对消费者安全和合规经营的承诺。ACMA表示,该承诺列明了一系列自愿性义务,旨在防止非法和不合规无线通信设备的销售。这些设备包括低质量对讲机、非法干扰器、手机信号增强器、未经授权的手机中继器以及各类“灰色市场”手机,这类产品可能对公共安全构成风险或干扰重要通信服务。通过签署承诺,电商平台主动阻止非法设备在其平台上销售,并承诺不成为不合规产品的入口。
巴西电商2025年访问量达339亿次,美客多排名第一
AMZ123获悉,近日,根据Conversion发布的《巴西电商行业报告》,巴西电商流量结构正加速向移动端倾斜。截至2025年11月,巴西电商在过去12个月累计访问量达339亿次。11月单月总访问量较10月下降1.3%,主要原因是通过浏览器访问量下降,其中网页端流量下滑4.8%,而应用端流量则同比增长10.6%。这一趋势表明,消费者购物行为正加速向移动端迁移,同时对仍以桌面端为主的平台产生了市场份额压力。报告显示,巴西电商市场集中度较高,前十电商平台占据总访问量的57.5%。
存火灾风险!美国CPSC紧急召回1.12万亚马逊在售插座
AMZ123获悉,近日,美国消费品安全委员会(CPSC)发布了一则紧急召回公告,宣布召回在亚马逊平台销售的ANNQUAN品牌插线板,原因是产品存在火灾风险,可能导致严重人身伤害甚至死亡。本次召回涉及型号为EX-D112-05和EX-D106-25的ANNQUAN插线板,召回数量约为11,200件。公告显示,ANNQUAN品牌插线板未配备补充过流保护装置,在超负荷使用时存在起火风险。一旦发生火灾,可能引发烟雾吸入或烧伤,对消费者人身安全构成严重威胁。此次召回的补救措施为全额退款。
TikTok又现义乌爆款!“香烟盒泡泡”28天营收百万
溢价超30倍,这款“解压神器”在TikTok已卖180万+
泰国将对低价跨境包裹征收最高30%关税和增值税
AMZ123获悉,近日,泰国海关部门宣布,自2026年1月1日起,对所有跨境进口商品征收关税和增值税,并正式取消价值低于1,500泰铢跨境包裹的免税政策。该政策调整旨在缩小税收漏洞,改善国内中小企业在电商领域面临的竞争环境。根据泰国海关部门的说明,原有的低价跨境包裹免税制度在过去几年推动了跨境电商的快速增长,但也导致大量低价商品以免税或低税方式进入市场,对本土中小企业形成明显压力。数据显示,上一个财政年度内,低价免税包裹进口总值已超过300亿泰铢。为确保新规顺利实施,泰国海关已与Lazada、Shopee、TikTok Shop、Temu和Shein等五大跨境电商平台签署合作备忘录。
从“卖限定”到“卖感受”,喜茶把联名做慢了
文 | Wen最近,喜茶又出大招了,这次牵手泡泡玛特新锐IP星星人,直接让大家陷入“星星追星潮”。根据潮新闻报道,产品开售当日,杭州多家门店订单队列排起长龙,部分门店的等待时长达到112分钟。这次联名的核心产品除了全球门店原本有售的烤黑糖波波牛乳、烤黑糖波波牛乳茶外,喜茶还围绕联名推出了冬日新品提拉米苏·英红(部分地区用不同茶底命名为提拉米苏·嫣红),这是喜茶首个全球同步上新的新品。国内有售挞类产品的门店,还推出了联名AOP提拉米苏可颂挞,用可颂挞呈现茶饮灵感,洒满可可粉的提拉米苏内馅上,还点缀了星星人形象。
传抖音母公司今年净赚500亿美元
据彭博社等多家外媒报道,抖音与TikTok母公司字节跳动在2025年有望实现约500亿美元净利润,这一数字将创下公司历史新高,这一利润表现接近美国科技巨头Meta预计的盈利水平。报道引述接近公司内部人士透露,截至今年前三季度,字节跳动已实现约400亿美元净利润,提前完成了年初内部设定的盈利目标;若按这一速度推算,公司全年净利润有望达到约500亿美元。分析认为,这一利润增长得益于字节跳动在全球短视频、社交媒体、电商与直播业务的强劲表现。旗下抖音及其海外版TikTok在广告收入、电商流量变现等方面表现突出,同时公司在海外市场特别是东南亚等区域的业务扩张也显著拉动盈利增长。
圣诞季单量骤跌,一批卖家广告费狂飙!
作者 | 林含@AMZ123声明 | 此文章版权归AMZ123所有,未经允许不得转载当圣诞钟声临近,亚马逊卖家们期盼的订单“圣诞老人”却并未如期而至。一边是少数卖家爆单的喜悦,另一边则是更多卖家面对提前“冻结”的销量曲线,陷入困惑与焦虑。AMZ123获悉,为了迎接即将到来的圣诞旺季,亚马逊于12月16日9点启动"圣诞限时特卖",活动将持续至12月25日23:59分,涵盖多品类商品优惠。数以万计的跨境卖家原本期待着一场持续至25日深夜的销售盛宴。然而,预期中的单量狂潮并未均匀降临,取而代之的是一场急剧分化的市场“压力测试”,并在活动后期演变为大范围的销量下跌。活动伊始,市场的分野便已清晰可见。
深圳又发钱!这些跨境企业瓜分超3000万
在中国跨境电商的版图上,深圳是一座无法被忽略的“灯塔”。这里不仅聚集了全国近半的跨境电商主体,更以其完整的产业链、活跃的创新氛围和敏锐的市场嗅觉,持续引领着行业的趋势与变革。近日,深圳再度“遥遥领先”,给跨境企业“发钱”了。AMZ123获悉,12月16日,深圳商务局发布了2025年度中央资金(跨境电子商务企业市场开拓扶持事项)拟奖励项目公示的通知,拟发放奖励超3000万元。▲图片来源于:深圳市商务局网站通知显示,专项资金申报对象为具备海外独立站业务的跨境企业。最终,共有21家企业的36个独立站项目获得支持,涵盖智能家居、新能源、消费电子、运动科技等领域大卖。
销量腰斩!Temu卖家陷入流量寒冬
系统崩了、单量没了、广告爆了——2025年12月的跨境卖家社群,这类吐槽已成为高频词汇。从平台系统突发宕机导致订单处理停滞,到大批商品链接无预警下架,叠加年末本应爆发的消费需求迟迟未现,跨境电商行业正经历一场意料之外的震荡,而Temu卖家群体的体感尤为强烈。AMZ123获悉,自12月以来,不少卖家均反映Temu店铺流量、销量十分低迷。而到了12月中下旬,这种低迷情况更是进一步加剧,多个产品甚至出现了“销量连续多日下滑”的极端情况。“最近猛跌,真的是淡得不行了。”“Temu销量掉完了,看这情况都懒得上品了。”“天塌了Temu流量怎么能下降那么多,说好的圣诞旺季呢。
美国41%美妆销售已转向线上渠道,消费者购物行为转变
AMZ123获悉,近日,根据NielsenIQ的最新数据,消费者购买行为正在发生结构性变化。全球美妆行业在2024年实现了7.3%的同比价值增长,电商渠道成为推动行业增长的核心力量。其中,美国市场约41%的美妆及个人护理产品销售通过线上渠道完成。全球美妆市场规模在2025年预计达到1万亿美元,美国贡献约1050亿美元,线上销售正在持续削弱传统实体零售的主导地位。从区域表现来看,拉丁美洲和非洲———中东地区成为全球美妆市场增长最快的区域,增速分别达到19.1%和27.1%。北美和西欧市场同样保持稳健增长,增幅分别为7.8%和7.7%。
跨境人必看!DDP、DDU、DAP、LDP到底有何区别?
DDP、DDU、DAP、LDP在跨境电商领域容易弄混淆。这次铭志会对每个术语的定义、买卖双方的责任划分、潜在风险以及适合的卖家画像等多个维度进行阐述,旨在为跨境电商卖家,提供一份清晰、实用且专业的行动指南。 一、DDP-完税后交货1、定义DDP是指卖方需要承担将货物从发货地运送到买方指定的目的地国家内某个具体地点的一切责任、风险和费用。 2、买卖双方责任(1)卖方责任· 全程物流: 负责从起运地到最终目的地的所有运输安排 。· 出口清关: 办理货物在出口国的所有海关手续。· 进口清关: 办理货物在进口国的所有海关手续,这是DDP与许多其他术语的关键区别 。
字节25年利润预计将达500亿美元,TikTok带动增长
AMZ123获悉,近日,据彭博社报道,字节跳动有限公司预计在2025年实现约500亿美元利润,创下公司历史新高。这一表现主要得益于旗下TikTok在电商、直播购物以及海外市场的快速发展。知情人士透露,字节跳动在今年前三季度已实现约400亿美元净利润,超出公司内部对2025年的利润预期,其盈利规模接近美国竞争对手Meta的预期水平(约600亿美元)。尽管TikTok在美国面临严格监管和国家安全审查压力,并促使美方推动对其所有权结构进行重组,字节跳动仍保持快速扩张。
90%抽检玩具不合规!法国加强电商平台玩具的监管力度
AMZ123获悉,近日,法国竞争、消费与反欺诈总局(DGCCRF)发布了2025年度玩具安全调查结果。调查显示,在电商平台销售的玩具中,存在高度集中的合规与安全风险。被抽检的玩具中,90%存在不合规问题,超过60%被认定为危险产品。相比之下,线下及自营电商等传统玩具销售渠道整体合规水平明显更高。本次调查共覆盖近2000家玩具相关经营主体以及5家大型电商平台,其中4家为境外平台。相关平台单个平台的月度独立访客量介于700万至2200万之间。调查显示,电商平台市场在2024年已占法国玩具零售分销总营业额的20%以上,成为监管部门重点关注对象。
圣诞旺季TRO预警! 988家跨境店版权踩坑,上百张侵权高危图案速避!AUDI、SPRUNKI、UGG等品牌反复维权!
上周(12.15-12.19)美国多地法院密集新增一批 TRO 案件,覆盖商标、专利、版权三大核心知识产权类型,涉及品类横跨家居、服饰、美妆、汽配等多个跨境热门赛道。如果不幸被TRO,被告卖家需要尽快和解或者应诉解决此案!
《TikTok Shop 2025年全站点Q3季报》PDF下载
2025年前三季度,TikTok Shop在全球市场继续保持强劲增长势头。截至第三季度结束,累计GMV已突破414亿美元。美国站依旧稳居全球第一,前三季度GMV达112亿美元:东南亚仍是总体增长最具韧性的板块,印尼站以83.4亿美元位列第二,增速较上季度保持稳定,与泰国(69亿美元)、越南(52亿美元)继续构成区域主力。马来西亚(40亿美元)与菲律宾(37亿美元)表现同样稳健。
《2026掘金指南:全球全品类20大消费趋势报告》PDF下载
生活百货类关键趋势解读 消费电子类关键趋势解读 消费品类关键趋势解读 时尚品类关键趋势解读
《亚马逊生活日用品类攻略手册》PDF下载
作为日常生活不可或缺的重要组成,生活百货品类覆盖范围广泛,包括家居用品、家具、车用配件、户外装备、园艺 工具、运动器材、家装用品、厨房、玩具以及宠物用品等众多领域。这类产品不仅是满足基本生活所需,更体现了人们对美好生活的向往和追求。
《掘金泰国-市场洞察与战略机遇报告2025》PDF下载
随着全球经济一体化的加速,泰国作为东盟的核心枢纽,凭借其独特的地缘优势庞大的消费市场以及持续优化的营商环境,成为众多企业战略布局的重要目标。本报告深入剖析泰国市场的政策红利、消费趋势、产业机遇以及合规挑战,旨在为有志于开拓泰国市场的中国企业提供行动指南,助力企业在东盟这片充满活力的土地上把握机遇、应对挑战、!实现可持续发展。
《2025欧美假日购物季营销指南》PDF下载
2025年美国假日购物季零售额预计同比仅增长1.2%,总销售额约1.359万亿美元,虽仍保持正增长,但为2009年以来最低增速,市场正在步入低增长的新常态。
《2025年跨境电商东南亚市场进入战略白皮书》PDF下载
东南亚电商,正以惊人的速度复刻中国电商高速增长的黄金时代。2024年东南亚电商GMV达到1284亿美元,短短5年涨幅超过3倍。全球电商2024年GMV增幅最快的十大市场中,东南亚独占四席。东南亚是拥有约6.7亿人口的广阔市场,在现今全球关税的不确定性大格局下,因其电商基建完善,利好的贸易政策,和更高的年轻人口占比,成为跨境卖家生意拓张焦点之一。
《2025年TikTok Shop玩具品类行业报告(欧美站)》PDF下载
分析TikTok Shop美国市场、英国市场、西班牙市场、墨西哥市场等主流市场点短视频及直播电商数据,选取TikTok与玩具爱好品类相关的内容进行分析报告。
《2025 洗护品类趋势与创新洞察》PDF下载
本报告独特价值:将消费者的“行为结果”据),揭示消费者深层心理动机、并能精准预判未来增长机会
AMZ123卖家导航
这个人很懒,还没有自我介绍
跨境电商赢商荟
跨境电商行业唯一一家一年365天不断更的媒体!
跨境数据中心
聚合海量跨境数据,输出跨境研究智慧。
亚马逊资讯
AMZ123旗下亚马逊资讯发布平台,专注亚马逊全球热点事件,为广大卖家提供亚马逊最新动态、最热新闻。
亿邦动力网
消除一切电商知识鸿沟,每日发布独家重磅新闻。
AMZ123跨境电商
专注跨境行业热点事件报道,每日坚持推送原创深度热文
跨境电商干货集结
跨境电商干货集结,是结合亚马逊跨境电商卖家交流群内大家在交流过程中最常遇到的问题,进行收集整理,汇总解答,将会持续更新大家当前最常遇见的问题。欢迎大家加入跨境电商干货集结卖家交流群一起探讨。
侃侃跨境那些事儿
不侃废话,挣钱要紧!
咨询
官方微信群
官方客服

扫码添加,立即咨询

加群
官方微信群
官方微信群

扫码添加,拉你进群

更多
订阅号服务号跨境资讯
二维码

为你推送和解读最前沿、最有料的跨境电商资讯

二维码

90% 亚马逊卖家都在关注的微信公众号

二维码

精选今日跨境电商头条资讯

回顶部